cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081787 Continued cotangent for sqrt(e).

Original entry on oeis.org

1, 4, 208, 51198, 3265038057, 25300257957809599598, 1548008157389016603196793951803038609594, 15445738611564165990406534887324277271178568836676520360367688416251534382546319
Offset: 0

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

References

  • D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.

Crossrefs

Programs

  • PARI
    \p900
    bn=vector(100);
    bn[1]=exp(1/2);
    b(n)=if(n<0,0,bn[n]);
    for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
    a(n)=floor(b(n+1));

Formula

sqrt(e) = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = sqrt(e), b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).