cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081790 Continued cotangent for tan(1).

Original entry on oeis.org

1, 4, 32, 1158, 1815746, 15716561494212, 1184500978807872650350593387, 5321879016477546178356935033926215638755808624425727229, 28586857373644233013728565794450100157386617152409721820238727067747604580786570816033645416762395120483912199
Offset: 0

Views

Author

Benoit Cloitre, Apr 10 2003

Keywords

References

  • D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.

Crossrefs

Programs

  • PARI
    bn=vector(100);
    b(n)=if(n<0,0,bn[n]);
    bn[1]=tan(1);
    for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))));
    a(n)=floor(b(n+1));

Formula

tan(1) = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = tan(1), b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).