A081792 Continued cotangent for cosh(1).
1, 4, 28, 898, 865865, 6558406221253, 369641727028862496144018420, 168218383805281752399017936550348552720479497871513674, 46139813370820669084709611625366168409170012365100187639338625228748249752136723842763775088752136299316085
Offset: 0
Keywords
References
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
Programs
-
PARI
\p900 bn=vector(100); bn[1]=cosh(1); b(n)=if(n<0,0,bn[n]); for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))); a(n)=floor(b(n+1));
Formula
cosh(1) = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = cosh(1), b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).