A081793 Continued cotangent for tanh(1).
0, 1, 7, 135, 35445, 44465908998, 5112887721516309845621, 75234509360529020708450352828794956245887456, 5786575206590910267083400178061771765781639734324927167565054640197289842752623499343753
Offset: 0
Keywords
References
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
Programs
-
PARI
\p900 bn=vector(100); bn[1]=tanh(1); b(n)=if(n<0,0,bn[n]); for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))); a(n)=floor(b(n+1));
Formula
tanh(1) = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = tanh(1), b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).