A081794 Continued cotangent for Pi/4.
0, 1, 8, 211, 114681, 118304381067, 14093169772574392414247, 233069007722838136376547872705625127588988391, 148096265277934997326846757550268707006396575812305676278686643630022889932579135326452726
Offset: 0
Keywords
References
- D. H. Lehmer, A cotangent analogue of continued fractions, Duke Math. J., 4 (1935), 323-340.
Programs
-
PARI
\p900 bn=vector(100); bn[1]=Pi/4; b(n)=if(n<0,0,bn[n]); for(n=2,10,bn[n]=(b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1)))); a(n)=floor(b(n+1));
Formula
Pi/4 = cot(Sum_{n>=0} (-1)^n*acot(a(n))).
Let b(0) = Pi/4, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)).