A081836 Let z(n) be the golden ratio (phi) truncated to n decimal digits; sequence gives maximum element in the continued fraction for z(n).
1, 2, 3, 5, 5, 6, 129, 15, 7, 10, 36, 65, 155, 70, 40, 20, 1122, 13, 15, 52, 52, 10, 19, 8, 87, 69, 42, 41, 30, 2036, 131, 86, 26, 41, 65, 231, 58, 161, 94, 94, 137, 137, 1323, 97, 14, 282, 15, 15, 122, 137, 80, 329, 164, 124, 748, 175, 7389, 2164, 101, 255, 201, 34, 17
Offset: 0
Examples
phi=(1+sqrt(5))/2=1.6180339887498948482045... so z(10)=1.6180339887 and the continued fraction for z(10) is [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 4, 1, 10, 36, 2], hence a(10)=36.
Programs
-
Mathematica
A081836[n_] := Max[ContinuedFraction[Floor[GoldenRatio*10^n]/10^n]]; Array[A081836, 100, 0] (* Paolo Xausa, Jun 19 2024 *)