A081888 Numbers n such that the least positive primitive root of n is larger than the value for all positive numbers smaller than n.
1, 3, 4, 6, 22, 118, 191, 362, 842, 2042, 2342, 3622, 16022, 29642, 66602, 110881, 143522, 535802, 5070662, 6252122, 6497402, 10219442, 69069002, 1130187962
Offset: 1
Programs
-
Maple
a306252 := proc(n::integer) local r; r := numtheory[primroot](n) ; if r <> FAIL then return r ; else return -1 ; end if; end proc: A081888 := proc() local rec,n,lpr ; rec := -1 ; for n from 1 do lpr := a306252(n) ; if lpr > rec then printf("%d,\n",n) ; rec := lpr ; end if; end do: end proc: A081888() ; # R. J. Mathar, Apr 04 2019
-
Mathematica
nmax = 10^5; r[n_] := r[n] = Module[{prl = PrimitiveRootList[n]}, If[prl == {}, -1, prl[[1]]]]; r[1] = 1; Reap[Module[{rec = -1, n, lpr}, For[n = 1, n <= nmax, n++, lpr = r[n]; If[lpr > rec, Print[n, " ", lpr]; Sow[n]; rec = lpr]]]][[2, 1]] (* Jean-François Alcover, Jun 19 2023, after R. J. Mathar *)
-
Python
from sympy import primitive_root from itertools import count, islice def f(n): r = primitive_root(n); return r if r != None else 0 def agen(r=0): yield from ((m, r:=f(m))[0] for m in count(1) if f(m) > r) print(list(islice(agen(), 18))) # Michael S. Branicky, Feb 13 2023
Formula
Numbers 1, 2, 4, p^m and 2*p^m have primitive roots for odd primes p and m >=1 natural number.
Extensions
a(24) from Michael S. Branicky, Feb 20 2023
Comments