A081893 Third binomial transform of C(n+2,2).
1, 6, 33, 172, 864, 4224, 20224, 95232, 442368, 2031616, 9240576, 41680896, 186646528, 830472192, 3674210304, 16173236224, 70866960384, 309237645312, 1344324763648, 5823975653376, 25151328485376, 108301895335936
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
Crossrefs
Cf. A081894.
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x)^2/(1-4*x)^3)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{12, -48, 64}, {1, 6, 33}, 50] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
x='x+O('x^30); Vec((1-3*x)^2/(1-4*x)^3) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 4^n*(n^2 + 15*n + 32)/32.
G.f.: (1 - 3*x)^2/(1 - 4*x)^3.
E.g.f.: (2 + 4*x + x^2)*exp(4*x)/2. - G. C. Greubel, Oct 18 2018
Comments