A081897 Fourth binomial transform of binomial(n+3, 3).
1, 8, 58, 396, 2595, 16500, 102500, 625000, 3753125, 22250000, 130468750, 757812500, 4365234375, 24960937500, 141796875000, 800781250000, 4498291015625, 25146484375000, 139953613281250, 775756835937500, 4283905029296875, 23574829101562500, 129318237304687500, 707244873046875000
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (20,-150,500,-625)
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)^3/(1-5*x)^4)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{20, -150, 500, -625}, {1, 8, 58, 396}, 50] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
x='x+O('x^30); Vec((1-4*x)^3/(1-5*x)^4) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 5^n*(n^3 + 42*n^2 + 407*n + 750)/750.
G.f.: (1 - 4*x)^3/(1 - 5*x)^4.
E.g.f.: (6 + 18*x + 9*x^2 + x^3)*exp(5*x)/6. - G. C. Greubel, Oct 18 2018
Comments