A081898 Second binomial transform of binomial(n+4, 4).
1, 7, 39, 193, 886, 3858, 16146, 65502, 259119, 1003833, 3820689, 14322663, 52986636, 193759452, 701265924, 2514778812, 8943620589, 31569189723, 110673119691, 385569479997, 1335567565746, 4601780568342, 15778086835014, 53852222811978, 183024799992891, 619577180566893
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (15,-90,270,-405,243).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x)^4/(1-3*x)^5)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{15,-90,270,-405,243}, {1,7,39,193,886}, 50] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
x='x+O('x^30); Vec((1-2*x)^4/(1-3*x)^5) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 3^n*(n^4 + 42*n^3 + 515*n^2 + 2034*n + 1944)/1944.
G.f.: (1 - 2*x)^4/(1 - 3*x)^5.
E.g.f.: (24 + 96*x + 72*x^2 + 16*x^3 + x^4)*exp(3*x)/24. - G. C. Greubel, Oct 18 2018
Comments