A081900 Fourth binomial transform of binomial(n+4, 4).
1, 9, 71, 519, 3606, 24150, 157250, 1001250, 6259375, 38534375, 234140625, 1406640625, 8367187500, 49335937500, 288632812500, 1676757812500, 9678955078125, 55548095703125, 317108154296875, 1801483154296875, 10188293457031250, 57380676269531250, 321922302246093750
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (25,-250,1250,-3125,3125).
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)^4/(1-5*x)^5)); // G. C. Greubel, Oct 18 2018 -
Mathematica
LinearRecurrence[{25,-250,1250,-3125,3125}, {1,9,71,519,3606}, 50] (* G. C. Greubel, Oct 18 2018 *)
-
PARI
x='x+O('x^30); Vec((1-4*x)^4/(1-5*x)^5) \\ G. C. Greubel, Oct 18 2018
Formula
a(n) = 5^n*(n^4 + 74*n^3 + 1571*n^2 + 10354*n + 15000)/15000.
G.f.: (1 - 4*x)^4/(1 - 5*x)^5.
E.g.f.: (24 + 96*x + 72*x^2 + 16*x^3 + x^4)*exp(5*x)/24. - G. C. Greubel, Oct 18 2018
Comments