cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A081900 Fourth binomial transform of binomial(n+4, 4).

Original entry on oeis.org

1, 9, 71, 519, 3606, 24150, 157250, 1001250, 6259375, 38534375, 234140625, 1406640625, 8367187500, 49335937500, 288632812500, 1676757812500, 9678955078125, 55548095703125, 317108154296875, 1801483154296875, 10188293457031250, 57380676269531250, 321922302246093750
Offset: 0

Views

Author

Paul Barry, Mar 31 2003

Keywords

Comments

Binomial transform of A081899.
5th binomial transform of (1,4,6,4,1,0,0,0,...).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-4*x)^4/(1-5*x)^5)); // G. C. Greubel, Oct 18 2018
  • Mathematica
    LinearRecurrence[{25,-250,1250,-3125,3125}, {1,9,71,519,3606}, 50] (* G. C. Greubel, Oct 18 2018 *)
  • PARI
    x='x+O('x^30); Vec((1-4*x)^4/(1-5*x)^5) \\ G. C. Greubel, Oct 18 2018
    

Formula

a(n) = 5^n*(n^4 + 74*n^3 + 1571*n^2 + 10354*n + 15000)/15000.
G.f.: (1 - 4*x)^4/(1 - 5*x)^5.
E.g.f.: (24 + 96*x + 72*x^2 + 16*x^3 + x^4)*exp(5*x)/24. - G. C. Greubel, Oct 18 2018