cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A081920 Expansion of exp(2x)/sqrt(1-x^2).

Original entry on oeis.org

1, 2, 5, 14, 49, 202, 1069, 6470, 48353, 391058, 3767029, 37936318, 445650385, 5359634906, 74198053661, 1036667808758, 16516851030721, 262805595346210, 4735033850606437, 84510767762583662, 1698609728377283441
Offset: 0

Views

Author

Paul Barry, Apr 01 2003

Keywords

Comments

Binomial transform of A081919

Crossrefs

Cf. A081921.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) -2*a(n-1) -(n-1)^2*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0, a(0)=1,a(1)=2,a(2)=5},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Feb 19 2018
  • Mathematica
    CoefficientList[Series[E^(2*x)/Sqrt[1-x^2], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Feb 04 2014 *)

Formula

E.g.f. exp(2x)/sqrt(1-x^2).
Conjecture: a(n) -2*a(n-1) -(n-1)^2*a(n-2) +2*(n-1)*(n-2)*a(n-3)=0. - R. J. Mathar, Nov 24 2012
Conjecture confirmed using d.e. (x^2-1)*y' + (-2*x^2+x+2)*y = 0 satisfied by the E.g.f. - Robert Israel, Feb 19 2018
a(n) ~ n^n * (exp(2)+(-1)^n*exp(-2)) / exp(n). - Vaclav Kotesovec, Feb 04 2014

A081922 Expansion of exp(4x)/sqrt(1-x^2).

Original entry on oeis.org

1, 4, 17, 76, 361, 1844, 10321, 64348, 453329, 3619684, 32666161, 329434604, 3677682937, 44901581716, 595567550321, 8505627039484, 130307878338721, 2126927187154628, 36912563369550289, 677277819029706124
Offset: 0

Views

Author

Paul Barry, Apr 01 2003

Keywords

Comments

Binomial transform of A081921
Generally, if e.g.f. = exp(p*x)/sqrt(1-x^2), then a(n) ~ n^n * (exp(p)+(-1)^n*exp(-p)) / exp(n). - Vaclav Kotesovec, Feb 04 2014

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[4x]/Sqrt[1-x^2] ,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, May 07 2012 *)

Formula

E.g.f.: exp(4x)/sqrt(1-x^2).
D-finite with recurrence: -a(n) + 4*a(n-1) + (n-1)^2*a(n-2) - 4*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ n^n * (exp(4) + (-1)^n*exp(-4)) / exp(n). - Vaclav Kotesovec, Feb 04 2014
Showing 1-2 of 2 results.