cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A119249 Indices of Fibonacci numbers in A081952.

Original entry on oeis.org

4, 7, 10, 17, 22, 31, 41, 47, 49, 71, 71, 98, 119, 161, 169, 191, 191, 239, 239, 239, 338, 338, 338, 431, 431, 449, 529, 599, 649, 649, 769, 769, 769, 769, 769, 769, 1009, 1009, 1009, 1409, 1441, 1441, 1441, 1441, 1729, 1889, 1889, 1889, 1889, 2159, 2209, 2209, 2209, 2591, 2642, 2642
Offset: 1

Views

Author

Ryan Propper, Jul 22 2006

Keywords

Examples

			A081952(4) = 1597 and 1597 is the 17th Fibonacci number, so a(4) = 17.
		

Crossrefs

Programs

  • Mathematica
    f[n_, m_, 0] := n == 1; f[n_, m_, d_] := (b = False; l = Select[Divisors[n], #>=m&]; For[i = 1, i <= Length[l], i++, k = l[[i]]; If[f[n / k, k + 1, d - 1], b = True; Break[]]]; b); Do[x = 3; While[ !f[Fibonacci[x] - 1, 2, y], x++ ]; Print[x], {y, 1, 50}]

Formula

A081952(n) = F(a(n)), where F(k) is the k-th Fibonacci number.
a(n) = the smallest k>3 such that A086435(A000045(k)-1)>=n. - Max Alekseyev, Apr 23 2010

Extensions

a(24)-a(26) from Max Alekseyev, Apr 23 2010
a(27)-a(56) from Amiram Eldar, Jun 24 2023

A081953 Smallest Fibonacci number equal one plus the product of n (not necessarily distinct) integers > 1.

Original entry on oeis.org

3, 5, 13, 55, 1597, 28657, 28657, 121393, 2971215073, 2971215073, 2971215073, 7778742049, 308061521170129, 308061521170129, 135301852344706746049, 135301852344706746049, 1454489111232772683678306641953
Offset: 1

Views

Author

Amarnath Murthy, Apr 02 2003

Keywords

Examples

			a(4)= 2*3*3*3 + 1 = 55.
a(5) = 2*3*3*7*19 + 1 = 1597.
		

Crossrefs

Subset of A000045.

Programs

  • Maple
    for n from 1 to 14 do for fib from 2 to 5000 do f := combinat[fibonacci](fib)-1 ; allf := op(2,ifactors(f)) ; pow := 0 : for i from 1 to nops(allf) do pow := pow + op(2,op(i,allf)) ; od : if pow >= n then printf("%d,",f+1) ; break ; fi ; od : od ; # R. J. Mathar, Apr 13 2006
  • PARI
    { m=3; for(n=1,30, while(bigomega(fibonacci(m)-1)Max Alekseyev, Apr 22 2010

Formula

a(n) = A000045(k) for the smallest k such that A001222(A000045(k)-1) >= n.

Extensions

More terms from R. J. Mathar, Apr 13 2006
Corrected and extended by Max Alekseyev, Apr 22 2010
Showing 1-2 of 2 results.