A082041 a(n) = 16*n^2 + 4*n + 1.
1, 21, 73, 157, 273, 421, 601, 813, 1057, 1333, 1641, 1981, 2353, 2757, 3193, 3661, 4161, 4693, 5257, 5853, 6481, 7141, 7833, 8557, 9313, 10101, 10921, 11773, 12657, 13573, 14521, 15501, 16513, 17557, 18633, 19741, 20881, 22053, 23257, 24493
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[16n^2+4n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,21,73},50] (* Harvey P. Dale, Sep 28 2024 *)
-
PARI
a(n)=16*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (-1-18*x-13*x^2)/(x-1)^3 . - R. J. Mathar, Dec 03 2014
From Elmo R. Oliveira, Oct 28 2024: (Start)
E.g.f.: exp(x)*(1 + 20*x + 16*x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments