A082043 Square array, A(n, k) = (k*n)^2 + 2*k*n + 1, read by antidiagonals.
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 25, 16, 1, 1, 25, 49, 49, 25, 1, 1, 36, 81, 100, 81, 36, 1, 1, 49, 121, 169, 169, 121, 49, 1, 1, 64, 169, 256, 289, 256, 169, 64, 1, 1, 81, 225, 361, 441, 441, 361, 225, 81, 1, 1, 100, 289, 484, 625, 676, 625, 484, 289, 100, 1
Offset: 0
Examples
Array, A(n, k), begins as: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012; 1, 4, 9, 16, 25, 36, 49, 64, 81, ... A000290; 1, 9, 25, 49, 81, 121, 169, 225, 289, ... A016754; 1, 16, 49, 100, 169, 256, 361, 484, 625, ... A016778; 1, 25, 81, 169, 289, 441, 625, 841, 1089, ... A016814; 1, 36, 121, 256, 441, 676, 961, 1296, 1681, ... A016862; 1, 49, 169, 361, 625, 961, 1369, 1849, 2401, ... A016922; 1, 64, 225, 484, 841, 1296, 1849, 2500, 3249, ... A016994; 1, 81, 289, 625, 1089, 1681, 2401, 3249, 4225, ... A017078; 1, 100, 361, 784, 1369, 2116, 3025, 4096, 5329, ... A017174; 1, 121, 441, 961, 1681, 2601, 3721, 5041, 6561, ... A017282; 1, 144, 529, 1156, 2025, 3136, 4489, 6084, 7921, ... A017402; 1, 169, 625, 1369, 2401, 3721, 5329, 7225, 9409, ... A017534; 1, 196, 729, 1600, 2809, 4356, 6241, 8464, 11025, ... ; Antidiagonals, T(n, k), begin as: 1; 1, 1; 1, 4, 1; 1, 9, 9, 1; 1, 16, 25, 16, 1; 1, 25, 49, 49, 25, 1; 1, 36, 81, 100, 81, 36, 1; 1, 49, 121, 169, 169, 121, 49, 1; 1, 64, 169, 256, 289, 256, 169, 64, 1; 1, 81, 225, 361, 441, 441, 361, 225, 81, 1; 1, 100, 289, 484, 625, 676, 625, 484, 289, 100, 1;
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Crossrefs
Programs
-
Magma
A082043:= func< n,k | (k*(n-k))^2 +2*k*(n-k) +1 >; [A082043(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Dec 24 2022
-
Mathematica
T[n_, k_]:= (k*(n-k))^2 +2*k*(n-k) +1; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 24 2022 *)
-
SageMath
def A082043(n,k): return (k*(n-k))^2 +2*k*(n-k) +1 flatten([[A082043(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Dec 24 2022
Formula
A(n, k) = (k*n)^2 + 2*k*n + 1 (square array).
T(n, k) = (k*(n-k))^2 + 2*k*(n-k) + 1 (number triangle).
A(k, n) = A(n, k).
T(n, n-k) = T(n, k).
A(n, n) = T(2*n, n) = A082044(n).
A(n, n-1) = T(2*n+1, n-1) = A058031(n), n >= 1.
A(n, n-2) = T(2*(n-1), n) = A000583(n-1), n >= 2.
A(n, n-3) = T(2*n-3, n) = A062938(n-3), n >= 3.
Sum_{k=0..n} T(n, k) = A082045(n) (diagonal sums).
Sum_{k=0..n} (-1)^k * T(n, k) = (1/4)*(1+(-1)^n)*(2 - 3*n). - G. C. Greubel, Dec 24 2022