cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082054 Sum of common prime divisors (without multiplicity) of sigma(n) and phi(n).

Original entry on oeis.org

0, 0, 2, 0, 2, 2, 2, 0, 0, 2, 2, 2, 2, 5, 2, 0, 2, 3, 2, 2, 2, 2, 2, 2, 0, 5, 2, 2, 2, 2, 2, 0, 2, 2, 5, 0, 2, 5, 2, 2, 2, 5, 2, 2, 5, 2, 2, 2, 3, 0, 2, 2, 2, 5, 2, 5, 2, 2, 2, 2, 2, 5, 2, 0, 5, 2, 2, 2, 2, 5, 2, 3, 2, 5, 2, 2, 5, 5, 2, 2, 0, 2, 2, 2, 2, 5, 2, 7, 2, 5, 2, 2, 2, 2, 5, 2, 2, 3, 5, 0, 2, 2, 2, 5, 5
Offset: 1

Views

Author

Labos Elemer, Apr 03 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; Table[Apply[Plus, Intersection[ba[EulerPhi[w]], ba[DivisorSigma[1, w]]]], {w, 1, 256}]
    a[n_] := Module[{g = GCD[DivisorSigma[1, n], EulerPhi[n]]}, If[g == 1, 0, Total[FactorInteger[g][[;; , 1]]]]]; Array[a, 100] (* Amiram Eldar, Feb 16 2025 *)
  • PARI
    a(n)=my(f=factor(gcd(sigma(n=factor(n)), eulerphi(n)))[,1]); sum(i=1,#f,f[i]) \\ Charles R Greathouse IV, Dec 09 2013

Formula

a(n) = A008472(A009223(n)). - Amiram Eldar, Feb 16 2025