cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A082055 Product of common prime-divisors (without multiplicity) of sigma(n) and phi(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 6, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 1, 2, 2, 6, 1, 2, 6, 2, 2, 2, 6, 2, 2, 6, 2, 2, 2, 3, 1, 2, 2, 2, 6, 2, 6, 2, 2, 2, 2, 2, 6, 2, 1, 6, 2, 2, 2, 2, 6, 2, 3, 2, 6, 2, 2, 6, 6, 2, 2, 1, 2, 2, 2, 2, 6, 2, 10, 2, 6, 2, 2, 2, 2, 6, 2, 2, 3, 6, 1, 2, 2, 2, 6, 6
Offset: 1

Views

Author

Labos Elemer, Apr 03 2003

Keywords

Comments

The squarefree kernel of the greatest common divisor of sigma(n) and phi(n). - Antti Karttunen, Jan 22 2020

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Table[Apply[Times, Intersection[ba[EulerPhi[w]], ba[DivisorSigma[1, w]]]], {w, 1, 256}]
  • PARI
    A082055(n) = factorback(factorint(gcd(sigma(n), eulerphi(n)))[, 1]); \\ Antti Karttunen, Jan 22 2020

Formula

a(n) = A007947(A009223(n)). - Antti Karttunen, Jan 22 2020

A082056 Least x = a(n) such that sum of common prime divisors (without multiplicity) of sigma(x) and phi(x) equals n, or 0 if such number (apparently) does not exist.

Original entry on oeis.org

0, 3, 18, 0, 14, 0, 88, 1800, 116, 196, 9801, 377, 2881, 1189, 711, 989, 3596, 477, 6901, 5203, 8473, 9179, 3956, 7067, 6439, 27709, 41309, 10763, 27117, 20569, 10207, 69091, 4976, 15376, 114953, 18650, 204469, 37225, 16279, 130300, 74450, 10877
Offset: 1

Views

Author

Labos Elemer, Apr 03 2003

Keywords

Comments

A solution is not possible for a(1), a(4) and a(6). - Donovan Johnson, Feb 28 2013

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] t=Table[0, {100}]; Do[s=Apply[Plus, Intersection [ba[EulerPhi[n]], ba[DivisorSigma[1, n]]]]; If[s<101&&t[[s]]\[Equal]0, t[[s]]=n], {n, 2, 1000000}]; t

A082057 Least x=a(n) such that product of common prime-divisors [without multiplicity] of sigma(x) and phi(x) equals n; or 0 if n is not a squarefree number or if no such x exists. Among indices n only squarefree numbers arise because multiplicity of prime factors is ignored.

Original entry on oeis.org

1, 3, 18, 0, 200, 14, 3364, 0, 0, 88, 9801, 0, 25281, 116, 1800, 0, 36992, 0, 4414201, 0, 196, 2881, 541696, 0, 0, 711, 0, 0, 98942809, 209, 1547536, 0, 19602, 6901, 814088, 0, 49042009, 8473, 1521, 0, 3150464641, 377, 245178368, 0, 0, 6439, 9265217536, 0, 0
Offset: 1

Views

Author

Labos Elemer, Apr 03 2003

Keywords

Examples

			For n = 85: a(85) = 924800 = 128*5*5*17*17; sigma(924800) = 2426835 = 3*5*17*31*307; phi(924800) = 348160 = 4096*5*17; common prime factor 5.17 = 85.
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]
    lf[x_] := Length[FactorInteger[x]]
    ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]
    t=Table[0, {100}]; Do[s=Apply[Times, Intersection
    [ba[EulerPhi[n]], ba[DivisorSigma[1, n]]]];
    If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}]; t

Formula

a(n) = Min{x; A082055(x)=n}; 0 if n is not squarefree.

Extensions

Corrected and extended by David Wasserman, Aug 27 2004
Showing 1-3 of 3 results.