A082063 Greatest common prime divisor of n and sigma_2(n) = A001157(n), or 1 if the two are relatively prime.
1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 1, 3, 1, 2, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 7, 1, 5, 1, 1, 1, 2, 5, 3, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 7, 1, 13, 2, 1, 2, 1, 5, 1, 1, 1, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 7, 5, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 2, 5
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
(* factors/exponent SET *) ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := x; f2[x_] := DivisorSigma[2, x]; Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}] (* Second program: *) Array[If[CoprimeQ[#1, #2], 1, Max@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, DivisorSigma[2, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
-
PARI
A006530(n) = if(1==n, n, vecmax(factor(n)[, 1])); A082063(n) = A006530(gcd(sigma(n,2), n)); \\ Antti Karttunen, Nov 03 2017
Formula
Extensions
Erroneous comment removed by Antti Karttunen, Nov 03 2017