A082065 Greatest common prime-divisor of phi(n)=A000010(n) and sigma(2,n) = A001157(n); a(n) = 1 if no common prime-divisor exists.
1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 5, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 1, 2, 5, 2, 2, 2, 2, 2, 1, 2, 2, 5, 3, 5, 2, 2, 2, 1, 5, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 1
Offset: 1
Keywords
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
gcpd := proc(a,b) local g ,d ; g := 1 ; for d in numtheory[divisors](a) intersect numtheory[divisors](b) do if isprime(d) then g := max(g,d) ; end if; end do: g ; end proc: A082065 := proc(n) gcpd( numtheory[phi](n), numtheory[sigma][2](n) ) ; end proc: seq(A082065(n),n=1..120) ; # R. J. Mathar, Jul 09 2011
-
Mathematica
Table[FactorInteger[GCD[EulerPhi@ n, DivisorSigma[2, n]]][[-1, 1]], {n, 100}] (* Michael De Vlieger, Jul 22 2017 *)
-
PARI
gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1) a(n)=gpf(gcd(eulerphi(n),sigma(n,2))) \\ Charles R Greathouse IV, Feb 21 2013
Extensions
Values corrected by R. J. Mathar, Jul 09 2011
Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022