cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082065 Greatest common prime-divisor of phi(n)=A000010(n) and sigma(2,n) = A001157(n); a(n) = 1 if no common prime-divisor exists.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 5, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 5, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 1, 2, 5, 2, 2, 2, 2, 2, 1, 2, 2, 5, 3, 5, 2, 2, 2, 1, 5, 2, 3, 2, 2, 2, 5, 2, 2, 2, 2, 5, 2, 2, 2, 2, 3, 2, 1
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Maple
    gcpd := proc(a,b) local g ,d ; g := 1 ; for d in numtheory[divisors](a) intersect numtheory[divisors](b) do if isprime(d) then g := max(g,d) ; end if; end do: g ; end proc:
    A082065 := proc(n) gcpd( numtheory[phi](n), numtheory[sigma][2](n) ) ; end proc:
    seq(A082065(n),n=1..120) ; # R. J. Mathar, Jul 09 2011
  • Mathematica
    Table[FactorInteger[GCD[EulerPhi@ n, DivisorSigma[2, n]]][[-1, 1]], {n, 100}] (* Michael De Vlieger, Jul 22 2017 *)
  • PARI
    gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1)
    a(n)=gpf(gcd(eulerphi(n),sigma(n,2))) \\ Charles R Greathouse IV, Feb 21 2013

Extensions

Values corrected by R. J. Mathar, Jul 09 2011
Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022