A082061 Greatest common prime divisor of n and phi(n)=A000010(n); a(n)=1 if no common prime divisor exists.
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 7, 5, 1, 2, 1, 3, 5, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 5, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 2, 1, 7, 3, 5, 1, 2, 1, 2, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Maple
gcpd := proc(a,b) local g ,d ; g := 1 ; for d in numtheory[divisors](a) intersect numtheory[divisors](b) do if isprime(d) then g := max(g,d) ; end if; end do: g ; end proc: A082061 := proc(n) gcpd( numtheory[phi](n), n) ; end proc: # R. J. Mathar, Jul 09 2011
-
Mathematica
(* factors/exponent SET *) ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := x; f2[x_] := EulerPhi[x]; Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}] (* Second program: *) Array[If[CoprimeQ[#1, #2], 1, Max@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, EulerPhi@ #} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
-
PARI
gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1) a(n)=gpf(gcd(eulerphi(n),n)) \\ Charles R Greathouse IV, Feb 19 2013
Formula
From Amiram Eldar, Dec 06 2024: (Start)
a(n) = 1 if and only if n is a cyclic number (A003277). (End)
Extensions
Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022