cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082066 Greatest common prime-divisor of sigma_1(n)=A000203(n) and sigma_2(n)=A001157(n); a(n)=1 if no common prime-divisor exists.

Original entry on oeis.org

1, 1, 2, 7, 2, 2, 2, 5, 13, 2, 2, 7, 2, 2, 2, 31, 2, 13, 2, 7, 2, 2, 2, 5, 31, 2, 5, 7, 2, 2, 2, 7, 2, 2, 2, 13, 2, 5, 2, 5, 2, 2, 2, 7, 13, 2, 2, 31, 19, 31, 2, 7, 2, 5, 2, 5, 5, 5, 2, 7, 2, 2, 13, 127, 2, 2, 2, 7, 2, 2, 2, 13, 2, 2, 31, 7, 2, 2, 2, 31, 11, 2, 2, 7, 2, 2, 5, 5, 2, 13, 2, 7, 2, 2, 2, 7, 2
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] f1[x_] := DivisorSigma[1, n]; f2[x_] := DivisorSigma[2, x] Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
    (* Second program: *)
    Table[Last[Apply[Intersection, FactorInteger[Map[DivisorSigma[#, n] &, {1, 2}]][[All, All, 1]]] /. {} -> {1}], {n, 109}] (* Michael De Vlieger, May 22 2017 *)
  • PARI
    gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1)
    a(n)=gpf(gcd(sigma(n),sigma(n,2))) \\ Charles R Greathouse IV, Feb 19 2013
    
  • Python
    from sympy import primefactors, gcd, divisor_sigma
    def a006530(n): return 1 if n==1 else primefactors(n)[-1]
    def a(n): return a006530(gcd(divisor_sigma(n), divisor_sigma(n, 2))) # Indranil Ghosh, May 22 2017

Formula

a(n) = A006530(A179931(n)). - Reinhard Zumkeller, Jul 10 2011

Extensions

Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022