A082066 Greatest common prime-divisor of sigma_1(n)=A000203(n) and sigma_2(n)=A001157(n); a(n)=1 if no common prime-divisor exists.
1, 1, 2, 7, 2, 2, 2, 5, 13, 2, 2, 7, 2, 2, 2, 31, 2, 13, 2, 7, 2, 2, 2, 5, 31, 2, 5, 7, 2, 2, 2, 7, 2, 2, 2, 13, 2, 5, 2, 5, 2, 2, 2, 7, 13, 2, 2, 31, 19, 31, 2, 7, 2, 5, 2, 5, 5, 5, 2, 7, 2, 2, 13, 127, 2, 2, 2, 7, 2, 2, 2, 13, 2, 2, 31, 7, 2, 2, 2, 31, 11, 2, 2, 7, 2, 2, 5, 5, 2, 13, 2, 7, 2, 2, 2, 7, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] f1[x_] := DivisorSigma[1, n]; f2[x_] := DivisorSigma[2, x] Table[Max[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}] (* Second program: *) Table[Last[Apply[Intersection, FactorInteger[Map[DivisorSigma[#, n] &, {1, 2}]][[All, All, 1]]] /. {} -> {1}], {n, 109}] (* Michael De Vlieger, May 22 2017 *)
-
PARI
gpf(n)=if(n>1,my(f=factor(n)[,1]);f[#f],1) a(n)=gpf(gcd(sigma(n),sigma(n,2))) \\ Charles R Greathouse IV, Feb 19 2013
-
Python
from sympy import primefactors, gcd, divisor_sigma def a006530(n): return 1 if n==1 else primefactors(n)[-1] def a(n): return a006530(gcd(divisor_sigma(n), divisor_sigma(n, 2))) # Indranil Ghosh, May 22 2017
Formula
Extensions
Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022