A082067 Smallest prime that divides n and phi(n)=A000010(n), or 1 if n and phi(n) are relatively prime.
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 7, 2, 1, 2, 1, 2, 5, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 5, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := n; f2[x_] := EulerPhi[x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}] (* Second program: *) Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {#, EulerPhi@ #} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
-
PARI
A020639(n) = if(1==n,n,vecmin(factor(n)[, 1])); A082067(n) = A020639(gcd(eulerphi(n), n)); \\ Antti Karttunen, Nov 03 2017
Formula
Extensions
Name clarified by Antti Karttunen, Nov 03 2017