A082071 Smallest common prime-divisor of phi(n) = A000010(n) and sigma_2(n) = A001157(n); a(n)=1 if no common prime-divisor exists.
1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 5, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 2, 2, 2, 2, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {EulerPhi@ #, DivisorSigma[2, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
-
PARI
A020639(n) = if(1==n,n,vecmin(factor(n)[, 1])); A082071(n) = A020639(gcd(eulerphi(n),sigma(n,2))); \\ Antti Karttunen, Nov 03 2017
Formula
Extensions
Values corrected by R. J. Mathar, Jul 09 2011
More terms from Antti Karttunen, Nov 03 2017
Changed "was found" to "exists" in definition. - N. J. A. Sloane, Jan 29 2022