cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082072 Smallest prime that divides sigma(n) = A000203(n) and sigma_2(n) = A001157(n), or 1 if sigma(n) and sigma_2(n) are relatively prime.

Original entry on oeis.org

1, 1, 2, 7, 2, 2, 2, 5, 13, 2, 2, 2, 2, 2, 2, 31, 2, 13, 2, 2, 2, 2, 2, 2, 31, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 127, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 7, 2, 2
Offset: 1

Views

Author

Labos Elemer, Apr 07 2003

Keywords

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := DivisorSigma[1, x]; f2[x_] := DivisorSigma[2, x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}]
    (* Second program: *)
    Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {DivisorSigma[1, #], DivisorSigma[2, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
  • PARI
    lpf(n)=my(f=factor(n)[,1]); if(#f,f[1],1)
    a(n)=lpf(gcd(sigma(n),sigma(n,2))) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = A020639(A179931(n)). - Antti Karttunen, Nov 03 2017

Extensions

Name edited by Antti Karttunen after an example by N. J. A. Sloane, Nov 04 2017