A082072 Smallest prime that divides sigma(n) = A000203(n) and sigma_2(n) = A001157(n), or 1 if sigma(n) and sigma_2(n) are relatively prime.
1, 1, 2, 7, 2, 2, 2, 5, 13, 2, 2, 2, 2, 2, 2, 31, 2, 13, 2, 2, 2, 2, 2, 2, 31, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 7, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 127, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 2, 2, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 7, 2, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; f1[x_] := DivisorSigma[1, x]; f2[x_] := DivisorSigma[2, x]; Table[Min[Intersection[ba[f1[w]], ba[f2[w]]]], {w, 1, 128}] (* Second program: *) Array[If[CoprimeQ[#1, #2], 1, Min@ Apply[Intersection, Map[FactorInteger[#][[All, 1]] &, {#1, #2}]]] & @@ {DivisorSigma[1, #], DivisorSigma[2, #]} &, 105] (* Michael De Vlieger, Nov 03 2017 *)
-
PARI
lpf(n)=my(f=factor(n)[,1]); if(#f,f[1],1) a(n)=lpf(gcd(sigma(n),sigma(n,2))) \\ Charles R Greathouse IV, Feb 14 2013
Formula
Extensions
Name edited by Antti Karttunen after an example by N. J. A. Sloane, Nov 04 2017