A082090 Length of iteration sequence if function A056239, a pseudo-logarithm is iterated and started at n. Fixed point equals zero for all initial values.
2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 6, 7, 6, 6, 7, 6, 6, 7, 7, 6, 7, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7
Offset: 1
Keywords
Examples
n=127:list={127,31,11,5,3,2,1,0},a[127]=8
References
- Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
- Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
f:= n-> add (numtheory[pi](i[1])*i[2], i=ifactors(n)[2]): a:= n-> 1+ `if`(n=1, 1, a(f(n))): seq (a(n), n=1..120); # Alois P. Heinz, Aug 09 2012
-
Mathematica
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] bpi[x_] := Table[PrimePi[Part[ba[x], j]], {j, 1, lf[x]}] api[x_] := Apply[Plus, ep[x]*bpi[x]] Table[Length[FixedPointList[api, w]]-1, {w, 2, 128}] Table[Length[FixedPointList[Total[PrimePi/@Join@@ ConstantArray@@@FactorInteger[#]]&,n]]-1, {n,100}] (* Gus Wiseman, Dec 01 2023 *)
Comments