cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082090 Length of iteration sequence if function A056239, a pseudo-logarithm is iterated and started at n. Fixed point equals zero for all initial values.

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 6, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 7, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 6, 6, 6, 7, 6, 6, 7, 7, 6, 6, 7, 6, 6, 7, 6, 6, 7, 7, 6, 7, 6, 7, 6, 6, 6, 7, 6, 7, 6, 6, 7
Offset: 1

Views

Author

Labos Elemer, Apr 09 2003

Keywords

Comments

From Gus Wiseman, Dec 01 2023: (Start)
Conjecture:
- The position of first appearance of k is n = A007097(k-2).
- The position of last appearance of k is n = A014221(k-2) = 2^^(k-2).
- The number of times k appears is: 1, 1, 2, 8, 435, ...
(End)

Examples

			n=127:list={127,31,11,5,3,2,1,0},a[127]=8
		

References

  • Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44. Mathematical Reviews, MR2433713 (2009c:65129), March 2009. Zentralblatt MATH, Zbl 1160.65015.
  • Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60. Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.

Crossrefs

A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices, length A001221, sum A066328.

Programs

  • Maple
    f:= n-> add (numtheory[pi](i[1])*i[2], i=ifactors(n)[2]):
    a:= n-> 1+ `if`(n=1, 1, a(f(n))):
    seq (a(n), n=1..120);  # Alois P. Heinz, Aug 09 2012
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] ep[x_] := Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] bpi[x_] := Table[PrimePi[Part[ba[x], j]], {j, 1, lf[x]}] api[x_] := Apply[Plus, ep[x]*bpi[x]] Table[Length[FixedPointList[api, w]]-1, {w, 2, 128}]
    Table[Length[FixedPointList[Total[PrimePi/@Join@@ ConstantArray@@@FactorInteger[#]]&,n]]-1, {n,100}] (* Gus Wiseman, Dec 01 2023 *)