A082093 a(n) is the least number m such that (m+n)!/m! = (m+1)*(m+2)*...*(m+n) divides lcm(1,...,m).
5, 13, 19, 32, 73, 89, 140, 199, 294, 468, 1072, 1072, 1072, 2161, 2976, 32805, 32806, 65732, 65732, 262153, 262154, 524457, 524640, 4194464, 4194464, 8388640, 8388640, 33554432, 33554432, 67108992, 67109088, 2147483659, 2147484110, 4294967312, 4294967312, 17179869209, 17179869210
Offset: 1
Keywords
Examples
a(6)=89: lcm(1,...,89) = 718766754945489455304472257065075294400 is divisible by 625757605200 = 90*91*92*93*94*95 = (89+6)!/89! and the quotient is 1148634469597477063638686172. For n=1 see A080765(1) = A082093(1).
Links
- David A. Corneth, Table of n, a(n) for n = 1..75
Programs
-
Mathematica
k = 1; lc = 1; Do[While[lc = LCM[lc, k]; Mod[lc, (n + k)!/k! ] != 0, k++ ]; Print[{n, k}], {n, 0, 50}] (* Robert G. Wilson v, Apr 12 2006 *)
Extensions
a(16)-a(19) from Robert G. Wilson v, Apr 12 2006
a(20)-a(23) from Vaclav Kotesovec, Aug 30 2019
a(24)-a(37) from David A. Corneth, Aug 30 2019
Comments