A082114 Diagonal sums of number array A082110.
1, 2, 9, 32, 89, 210, 441, 848, 1521, 2578, 4169, 6480, 9737, 14210, 20217, 28128, 38369, 51426, 67849, 88256, 113337, 143858, 180665, 224688, 276945, 338546, 410697, 494704, 591977, 704034, 832505, 979136, 1145793, 1334466, 1547273
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[(n+1)*(n^4-n^3+26*n^2-26*n+30)/30: n in [0..50]]; // G. C. Greubel, Dec 22 2022
-
Mathematica
LinearRecurrence[{6,-15,20,-15,6,-1}, {1,2,9,32,89,210}, 51] (* G. C. Greubel, Dec 22 2022 *)
-
SageMath
[(n+1)*(n^4-n^3+26*n^2-26*n+30)/30 for n in range(51)] # G. C. Greubel, Dec 22 2022
Formula
a(n) = (n+1)*(n^4 - n^3 + 26*n^2 - 26*n + 30)/30.
From G. C. Greubel, Dec 22 2022: (Start)
G.f.: (1 - 4*x + 12*x^2 - 12*x^3 + 7*x^4)/(1-x)^6.
E.g.f.: (1/30)*(30 + 30*x + 90*x^2 + 50*x^3 + 10*x^4 + x^5)*exp(x). (End)