cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082136 Expansion of e.g.f. x*exp(5*x)*cosh(x).

Original entry on oeis.org

0, 1, 10, 78, 560, 3880, 26400, 177632, 1185280, 7853184, 51699200, 338331136, 2201948160, 14258137088, 91894620160, 589744496640, 3770069811200, 24015941435392, 152494553825280, 965472423378944, 6096346179174400
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Comments

Binomial transform of A082135. 5th binomial transform of (0,1,0,3,0,5,0,7,...)

Crossrefs

Cf. A082134.

Programs

  • Magma
    [n*(4^(n-1)+6^(n-1))/2: n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[x*Exp[5*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* or *) Table[n*(4^(n-1)+6^(n-1))/2, {n,0,30}] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,30, print1(n*(4^(n-1)+6^(n-1))/2, ", ")) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = n*(4^(n-1) + 6^(n-1))/2.
E.g.f.: x*exp(5*x)*cosh(x).
G.f. x*(1-10*x+26*x^2) / ( (6*x-1)^2*(4*x-1)^2 ). - R. J. Mathar, Nov 24 2012