cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082144 A subdiagonal of number array A082137.

Original entry on oeis.org

1, 4, 30, 224, 1680, 12672, 96096, 732160, 5601024, 42997760, 331082752, 2556051456, 19778969600, 153363087360, 1191302553600, 9268801044480, 72219408138240, 563445537177600, 4401135695953920, 34414895667609600, 269374774271016960, 2110381254330286080
Offset: 0

Views

Author

Paul Barry, Apr 06 2003

Keywords

Examples

			a(0)=(2^(-1)+(0^0)/2)C(2,0)=2*(1/2)=1 (use 0^0=1).
		

Crossrefs

Programs

  • Magma
    [(2^(n-1) + 0^n/2)*Binomial(2*n+2,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Join[{1}, Table[2^(n-1)*Binomial[2*n+2, n], {n,1,50}]] (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,30, print1((2^(n-1) + 0^n/2)*Binomial(2*n+2,n), ", ")) \\ G. C. Greubel, Feb 05 2018
    

Formula

a(n) = (2^(n-1) + 0^n/2)*C(2*n+2, n).
(n+2)*a(n) +12*(-n-1)*a(n-1) +16*(2*n-1)*a(n-2)=0. - R. J. Mathar, Oct 29 2014
From Amiram Eldar, Jan 16 2024: (Start)
Sum_{n>=0} 1/a(n) = 88*arccot(sqrt(7))/(7*sqrt(7)) - 3/7.
Sum_{n>=0} (-1)^n/a(n) = 52*log(2)/27 - 5/9. (End)