A082184 The a(n)-th triangular number is the sum of the n-th triangular number and the smallest triangular number possible.
3, 6, 10, 6, 8, 28, 13, 10, 13, 18, 21, 16, 15, 26, 136, 21, 23, 40, 21, 23, 28, 38, 27, 31, 28, 28, 61, 36, 38, 496, 53, 36, 43, 36, 61, 46, 41, 44, 106, 51, 53, 91, 45, 49, 58, 78, 66, 52, 54, 53, 112, 66, 55, 58, 78, 62, 73, 98, 101, 76, 67, 106, 166, 66, 83, 142, 71
Offset: 2
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 2..65536
- J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
Crossrefs
Programs
-
Maple
a:= proc(n) local h, j; h:= n*(n+1); for j from n+1 do if issqr(1+4*(j*(j+1)-h)) then return j fi od end: seq(a(n), n=2..70); # Alois P. Heinz, Jul 31 2019
-
Mathematica
a[n_] := Module[{h = n(n+1), j}, For[j = n+1, True, j++, If[IntegerQ[ Sqrt[1 + 4 (j(j+1) - h)]], Return[j]]]]; a /@ Range[2, 70] (* Jean-François Alcover, Jun 05 2020, after Maple *)
-
PARI
for(n=2, 100, t=n*(n+1)/2; for(k=1, 10^9, u=t+k*(k+1)/2; v=floor(sqrt(2*u)); if(v*(v+1)/2==u, print1(v", "); break)))
Comments