A082244 Smallest odd prime that is the sum of 2n+1 consecutive primes.
3, 23, 53, 197, 127, 233, 691, 379, 499, 857, 953, 1151, 1259, 1583, 2099, 2399, 2417, 2579, 2909, 3803, 3821, 4217, 4651, 5107, 5813, 6829, 6079, 6599, 14153, 10091, 8273, 10163, 9521, 12281, 13043, 11597, 12713, 13099, 16763, 15527, 16823, 22741
Offset: 0
Examples
For n = 2, 2+3+5+7+11=28 3+5+7+11+13=39 5+7+11+13+17=53 so 53 is the first prime that is the sum of 5 consecutive primes
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
P:= select(isprime, [seq(i,i=3..3000,2)]): S:= [0,op(ListTools:-PartialSums(P))]: nS:= nops(S): R:= NULL: for n from 1 do found:= false; for j from 1 to nS - 2*n + 1 while not found do v:= S[j+2*n-1]-S[j]; if isprime(v) then R:= R,v; found:= true fi od; if not found then break fi; od: R; # Robert Israel, Jan 09 2025
-
Mathematica
Join[{3},Table[SelectFirst[Total/@Partition[Prime[Range[1000]],2n+1,1],PrimeQ],{n,50}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 15 2016 *)
-
PARI
\\ First prime that the sum of an odd number of consecutive primes psumprm(n) = { sr=0; forstep(i=1,n,2, s=0; for(j=1,i, s+=prime(j); ); for(x=1,n, s = s - prime(x)+ prime(x+i); if(isprime(s),sr+=1.0/s; print1(s" "); break); ); ); print(); print(sr) }
Formula
The sum of the reciprocals = 0.4304...