A082284 a(n) = smallest number k such that k - tau(k) = n, or 0 if no such number exists, where tau(n) = the number of divisors of n (A000005).
1, 3, 6, 5, 8, 7, 9, 0, 0, 11, 14, 13, 18, 0, 20, 17, 24, 19, 22, 0, 0, 23, 25, 27, 0, 0, 32, 29, 0, 31, 34, 35, 40, 0, 38, 37, 0, 0, 44, 41, 0, 43, 46, 0, 50, 47, 49, 51, 56, 0, 0, 53, 0, 57, 58, 0, 0, 59, 62, 61, 72, 65, 68, 0, 0, 67, 0, 0, 0, 71, 74, 73, 84, 77, 0, 0, 81, 79, 82, 0, 88
Offset: 0
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 0..124340
Crossrefs
Programs
-
Maple
N:= 1000: # to get a(0) .. a(N) V:= Array(0..N): for k from 1 to 2*(N+1) do v:= k - numtheory:-tau(k); if v <= N and V[v] = 0 then V[v]:= k fi od: seq(V[n],n=0..N); # Robert Israel, Dec 21 2015
-
Mathematica
Table[k = 1; While[k - DivisorSigma[0, k] != n && k <= 2 (n + 1), k++]; If[k > 2 (n + 1), 0, k], {n, 0, 80}] (* Michael De Vlieger, Dec 22 2015 *)
-
PARI
allocatemem(123456789); uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41). uplim2 = 2162160; v082284 = vector(uplim1); A082284 = n -> if(!n,1,v082284[n]); for(n=1, uplim1, k = n-numdiv(n); if((0 == A082284(k)), v082284[k] = n)); for(n=0, 124340, write("b082284.txt", n, " ", A082284(n))); \\ Antti Karttunen, Dec 21 2015
-
Scheme
(define (A082284 n) (if (zero? n) 1 (let ((u (+ n (A002183 (+ 2 (A261100 n)))))) (let loop ((k n)) (cond ((= (A049820 k) n) k) ((> k u) 0) (else (loop (+ 1 k)))))))) ;; Antti Karttunen, Dec 21 2015
Formula
Other identities and observations. For all n >= 0:
a(n) <= A262686(n).
Extensions
More terms from David Wasserman, Aug 31 2004
Comments