cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082284 a(n) = smallest number k such that k - tau(k) = n, or 0 if no such number exists, where tau(n) = the number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 6, 5, 8, 7, 9, 0, 0, 11, 14, 13, 18, 0, 20, 17, 24, 19, 22, 0, 0, 23, 25, 27, 0, 0, 32, 29, 0, 31, 34, 35, 40, 0, 38, 37, 0, 0, 44, 41, 0, 43, 46, 0, 50, 47, 49, 51, 56, 0, 0, 53, 0, 57, 58, 0, 0, 59, 62, 61, 72, 65, 68, 0, 0, 67, 0, 0, 0, 71, 74, 73, 84, 77, 0, 0, 81, 79, 82, 0, 88
Offset: 0

Views

Author

Amarnath Murthy, Apr 14 2003

Keywords

Comments

a(p-2) = p for odd primes p.

Crossrefs

Column 1 of A265751.
Cf. A262686 (the largest such number), A262511 (positions where these are equal and nonzero).
Cf. A266114 (same sequence sorted into ascending order, with zeros removed).
Cf. A266115 (positive numbers missing from this sequence).
Cf. A266110 (number of iterations before zero is reached), A266116 (final nonzero value reached).
Cf. also tree A263267 and its illustration.

Programs

  • Maple
    N:= 1000: # to get a(0) .. a(N)
    V:= Array(0..N):
    for k from 1 to 2*(N+1) do
      v:= k - numtheory:-tau(k);
      if v <= N and V[v] = 0 then V[v]:= k fi
    od:
    seq(V[n],n=0..N); # Robert Israel, Dec 21 2015
  • Mathematica
    Table[k = 1; While[k - DivisorSigma[0, k] != n && k <= 2 (n + 1), k++]; If[k > 2 (n + 1), 0, k], {n, 0, 80}] (* Michael De Vlieger, Dec 22 2015 *)
  • PARI
    allocatemem(123456789);
    uplim1 = 2162160 + 320; \\ = A002182(41) + A002183(41).
    uplim2 = 2162160;
    v082284 = vector(uplim1);
    A082284 = n -> if(!n,1,v082284[n]);
    for(n=1, uplim1, k = n-numdiv(n); if((0 == A082284(k)), v082284[k] = n));
    for(n=0, 124340, write("b082284.txt", n, " ", A082284(n)));
    \\ Antti Karttunen, Dec 21 2015
    
  • Scheme
    (define (A082284 n) (if (zero? n) 1 (let ((u (+ n (A002183 (+ 2 (A261100 n)))))) (let loop ((k n)) (cond ((= (A049820 k) n) k) ((> k u) 0) (else (loop (+ 1 k))))))))
    ;; Antti Karttunen, Dec 21 2015

Formula

Other identities and observations. For all n >= 0:
a(n) <= A262686(n).

Extensions

More terms from David Wasserman, Aug 31 2004