A082370 a(n) = number of sets of consecutive primes whose arithmetic mean is A000040(n).
1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 2, 1, 3, 3, 1, 2, 4, 3, 3, 5, 1, 1, 6, 2, 3, 1, 2, 1, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 4, 2, 1, 2, 4, 3, 3, 3, 2, 2, 1, 2, 1, 4, 3, 5, 2, 1, 2, 1, 3, 1, 3, 1, 3, 3, 2, 3, 2, 3, 1, 1, 2, 1, 5, 2, 1, 2, 3, 1, 2, 1, 3, 3, 2, 1, 1, 5, 2, 2
Offset: 1
Examples
For n=3; A000040(3) = 5. the two sets are 5/1 = 5, (3+5+7)/3 = 5. so a(3)=2.
Links
- Robert Israel, Table of n, a(n) for n = 1..4000
Programs
-
Maple
N:= 300: P:= [0,seq(ithprime(i),i=1..N)]: S:= ListTools:-PartialSums(P): mmax:= numtheory:-pi(floor(S[N]/N)): V:= Vector(1..mmax,1): for i from 1 to N+1 do for j from i+2 to N+1 do r:= (S[j]-S[i])/(j-i); if r::integer and isprime(r) then k:= numtheory:-pi(r); if k <= mmax then V[k]:= V[k]+1 fi fi od od: convert(V,list); # Robert Israel, Mar 18 2018
Extensions
Extended by Ray Chandler, Oct 03 2006