cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082424 Coefficient of s(2n) in s(n,n) * s(n,n) * s(n,n) * s(n,n) * s(n,n) * s(n,n), where s(n,n) is the Schur function indexed by two parts of size n, s(2n) is the Schur function corresponding to the trivial representation and * represents the inner or Kronecker product.

Original entry on oeis.org

1, 1, 11, 41, 320, 1917, 14582, 100562, 688427, 4380888, 26324611, 148136566, 785175771, 3925637781, 18586683128, 83578440418, 358079558873, 1465784048253, 5748270468573, 21649265291143, 78483868584001
Offset: 0

Views

Author

Mike Zabrocki, Apr 24 2003

Keywords

References

  • I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford Univ. Press, second edition, 1995.

Crossrefs

Cf. A008763 change 6 to 4 in the above program.

Programs

  • Maple
    compsclr := proc(k) local gamma; add( combinat[Chi]( [k,k], gamma)^6/ZEE(gamma),gamma= combinat[partition](2*k)); end: ZEE := proc (mu) local res, m, i; m := 1; res := convert(mu,`*`); for i from 2 to nops(mu) do if mu[i] <> mu[i-1] then m := 1 else m := m+1 fi; res := res*m; od; res; end:

Formula

a(n) = Sum_{gamma} Chi^{(n, n)}( gamma )^6/z(gamma) the sum is over all partitions gamma of 2n Chi^lambda(gamma) is the value of the symmetric group character z(gamma) is the size of the stablizer of the conjugacy class of symmetric group indexed by the partition gamma