A082424 Coefficient of s(2n) in s(n,n) * s(n,n) * s(n,n) * s(n,n) * s(n,n) * s(n,n), where s(n,n) is the Schur function indexed by two parts of size n, s(2n) is the Schur function corresponding to the trivial representation and * represents the inner or Kronecker product.
1, 1, 11, 41, 320, 1917, 14582, 100562, 688427, 4380888, 26324611, 148136566, 785175771, 3925637781, 18586683128, 83578440418, 358079558873, 1465784048253, 5748270468573, 21649265291143, 78483868584001
Offset: 0
Keywords
References
- I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford Univ. Press, second edition, 1995.
Crossrefs
Cf. A008763 change 6 to 4 in the above program.
Programs
-
Maple
compsclr := proc(k) local gamma; add( combinat[Chi]( [k,k], gamma)^6/ZEE(gamma),gamma= combinat[partition](2*k)); end: ZEE := proc (mu) local res, m, i; m := 1; res := convert(mu,`*`); for i from 2 to nops(mu) do if mu[i] <> mu[i-1] then m := 1 else m := m+1 fi; res := res*m; od; res; end:
Formula
a(n) = Sum_{gamma} Chi^{(n, n)}( gamma )^6/z(gamma) the sum is over all partitions gamma of 2n Chi^lambda(gamma) is the value of the symmetric group character z(gamma) is the size of the stablizer of the conjugacy class of symmetric group indexed by the partition gamma