A082470 a(n) is the number of k >= 0 such that k! + prime(n) is prime.
2, 1, 3, 4, 5, 3, 6, 7, 6, 6, 9, 11, 9, 5, 10, 9, 10, 9, 9, 8, 9, 9, 11, 8, 10, 10, 12, 16, 12, 10, 10, 13, 14, 14, 16, 11, 12, 9, 15, 10, 9, 8, 12, 9, 10, 6, 8, 7, 14, 13, 10, 21, 15, 9, 13, 11, 9, 19, 12, 13, 16, 11, 19, 17, 9, 13
Offset: 1
Keywords
Examples
For n = 4, 3!+7 = 13, 4!+7=31, 5!+7=127 and 6!+7 = 727 are the 4 primes in n!+7.
Links
- Robert Israel, Table of n, a(n) for n = 1..227
Programs
-
Maple
A082470 := proc(n) local ctr,j ; ctr := 0: for j from 0 to ithprime(n)-1 do if isprime(j!+ithprime(n))=true then ctr := ctr+1 end if ; end do ; ctr end proc: seq(A082470(n),n=1..50) ;
-
Mathematica
Table[Count[Range[0,Prime[n]-1]!+Prime[n],?PrimeQ],{n,70}] (* _Harvey P. Dale, Feb 06 2019 *)
-
PARI
nfactppct(n) = { forprime(p=1,n, c=0; for(x=0,n,y=x!+p;if(isprime(y),c++) ); print1(c",") ) } \\ Cino Hilliard, Apr 15 2004
-
Python
from sympy import isprime, prime from itertools import count, islice def agen(): # generator of terms for n in count(1): pn, fk, an = prime(n), 1, 0 for k in range(1, pn+1): if isprime(pn + fk): an += 1 fk *= k yield an print(list(islice(agen(), 40))) # Michael S. Branicky, Apr 16 2022
Extensions
Edited by Franklin T. Adams-Watters, Aug 01 2006
Offset corrected by Robert Israel, May 26 2021
Comments