A082490
Exponent of highest power of 3 dividing sum(0<=k
0, 1, 2, 0, 2, 3, 1, 2, 4, 0, 1, 2, 0, 3, 4, 2, 3, 5, 1, 2, 3, 1, 3, 4, 2, 3, 6, 0, 1, 2, 0, 2, 3, 1, 2, 4, 0, 1, 2, 0, 4, 5, 3, 4, 6, 2, 3, 4, 2, 4, 5, 3, 4, 7, 1, 2, 3, 1, 3, 4, 2, 3, 5, 1, 2, 3, 1, 4, 5, 3, 4, 6, 2, 3, 4, 2, 4, 5, 3, 4, 8, 0, 1, 2, 0, 2, 3, 1, 2, 4, 0, 1, 2, 0, 3, 4
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.
- J. Shallit, k-regular Sequences
- J. Shallit, Number theory and formal languages, in D. A. Hejhal, J. Friedman, M. C. Gutzwiller and A. M. Odlyzko, eds., Emerging Applications of Number Theory, IMA Volumes in Mathematics and Its Applications, V. 109, Springer-Verlag, 1999, pp. 547-570. (Example 1.)
Programs
-
Maple
map(t -> padic:-ordp(t,3), ListTools:-PartialSums([seq(binomial(2*n,n),n=0..100)])); # Robert Israel, Mar 27 2018
-
Mathematica
IntegerExponent[#,3]&/@Accumulate[Table[Binomial[2n,n],{n,0,100}]]
-
PARI
s=0; for(n=1, 150, s=s+binomial(2*n-2, n-1); print1(valuation(s, 3)", "))
-
PARI
a(n) = valuation(n^2 * binomial(2*n, n), 3); \\ Michel Marcus, Mar 27 2018