cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082490 Exponent of highest power of 3 dividing sum(0<=k

Original entry on oeis.org

0, 1, 2, 0, 2, 3, 1, 2, 4, 0, 1, 2, 0, 3, 4, 2, 3, 5, 1, 2, 3, 1, 3, 4, 2, 3, 6, 0, 1, 2, 0, 2, 3, 1, 2, 4, 0, 1, 2, 0, 4, 5, 3, 4, 6, 2, 3, 4, 2, 4, 5, 3, 4, 7, 1, 2, 3, 1, 3, 4, 2, 3, 5, 1, 2, 3, 1, 4, 5, 3, 4, 6, 2, 3, 4, 2, 4, 5, 3, 4, 8, 0, 1, 2, 0, 2, 3, 1, 2, 4, 0, 1, 2, 0, 3, 4
Offset: 1

Views

Author

Ralf Stephan, Apr 28 2003

Keywords

Crossrefs

Programs

  • Maple
    map(t -> padic:-ordp(t,3), ListTools:-PartialSums([seq(binomial(2*n,n),n=0..100)])); # Robert Israel, Mar 27 2018
  • Mathematica
    IntegerExponent[#,3]&/@Accumulate[Table[Binomial[2n,n],{n,0,100}]]
  • PARI
    s=0; for(n=1, 150, s=s+binomial(2*n-2, n-1); print1(valuation(s, 3)", "))
    
  • PARI
    a(n) = valuation(n^2 * binomial(2*n, n), 3); \\ Michel Marcus, Mar 27 2018

Formula

a(n) = A007949(A006134(n)) = A007949 (n^2 * C(2n, n)) (Allouche, Shallit; Zagier) = 2*A007949(n) + A000989(n).