A082548 a(n) is the number of values of k such that k can be expressed as the sum of distinct primes with largest prime in the sum equal to prime(n).
1, 2, 4, 7, 12, 23, 36, 53, 72, 95, 124, 155, 192, 233, 276, 323, 376, 435, 496, 563, 634, 707, 786, 869, 958, 1055, 1156, 1259, 1366, 1475, 1588, 1715, 1846, 1983, 2122, 2271, 2422, 2579, 2742, 2909, 3082, 3261, 3442, 3633, 3826, 4023, 4222, 4433, 4656, 4883
Offset: 1
Examples
For n=4; 7 is the 4th prime. 7 = 7, 9 = 2+7, 10 = 3+7, 12 = 5+7 = 2+3+7, 14 = 2+5+7, 15 = 3+5+7, 17 = 2+3+5+7. Values of m are 7 and 9,10,12,14,15,17. so a(4)=7. From _Seiichi Manyama_, Oct 01 2019: (Start) 7 = 7, so 7*2 = 14 = 24-10 = 24+(-2-3-5). 2+7 = 9, so (2+7)*2 = 18 = 24- 6 = 24+( 2-3-5). 3+7 = 10, so (3+7)*2 = 20 = 24- 4 = 24+(-2+3-5). 5+7 = 12, so (5+7)*2 = 24 = 24+ 0 = 24+(-2-3+5). 2+5+7 = 14, so (2+5+7)*2 = 28 = 24+ 4 = 24+( 2-3+5). 3+5+7 = 15, so (3+5+7)*2 = 30 = 24+ 6 = 24+(-2+3+5). 2+3+5+7 = 17. so (2+3+5+7)*2 = 34 = 24+10 = 24+( 2+3+5). (End) From _Seiichi Manyama_, Oct 02 2019: (Start) Let b(n) be the number of k (>=0) that can be expressed as the sum of distinct primes with largest prime in the sum not greater than prime(n). n |b(n)| | --+----+------------+-------------------------------------- 4 | 12 | 0 | 11 | | 2 | 13 = 2+11 | | 3 | 14 = 3+11 | | 5 | 16 = 5+11 | | 7 | 18 = 7+11 | | 8 = 3+5 | 19 = 8+11 = (3+5)+11 | | 9 = 17-8 | 20 = 9+11 = (2+3+5+7)-(3+5)+11 | | 10 = 17-7 | 21 = 10+11 = (2+3+5+7)-7 +11 | | 12 = 17-5 | 23 = 12+11 = (2+3+5+7)-5 +11 | | 14 = 17-3 | 25 = 14+11 = (2+3+5+7)-3 +11 | | 15 = 17-2 | 26 = 15+11 = (2+3+5+7)-2 +11 | | 17 = 17-0 | 28 = 17+11 = (2+3+5+7) +11 --+----+------------+-------------------------------------- 5 | 23 | 0 | 13 | | 2 | 15 = 2+13 | | 3 | 16 = 3+13 | | 5 | 18 = 5+13 | | 7 | 20 = 7+13 | | 8 = 3+5 | 21 = 8+13 = (3+5) +13 | | 9 = 2+7 | 22 = 9+13 = (2+7) +13 | | 10 = 2+3+5 | 23 = 10+13 = (2+3+5)+13 | | 11 | 24 = 11+13 | | ... | ... | | 17 = 28-11 | 30 = 17+13 = (2+3+5+7+11)-11 +13 | | 18 = 28-10 | 31 = 18+13 = (2+3+5+7+11)-(2+3+5)+13 | | 19 = 28- 9 | 32 = 19+13 = (2+3+5+7+11)-(2+7) +13 | | 20 = 28- 8 | 33 = 20+13 = (2+3+5+7+11)-(3+5) +13 | | 21 = 28- 7 | 34 = 21+13 = (2+3+5+7+11)- 7 +13 | | 23 = 28- 5 | 36 = 23+13 = (2+3+5+7+11)- 5 +13 | | 25 = 28- 3 | 38 = 25+13 = (2+3+5+7+11)- 3 +13 | | 26 = 28- 2 | 39 = 26+13 = (2+3+5+7+11)- 2 +13 | | 28 = 28- 0 | 41 = 28+13 = (2+3+5+7+11) +13 --+----+------------+------------------------------------- ... b(n) = Sum_{k=1..n} prime(k) + 1 - 3*2 = A007504(n) - 5 for n>3. So a(n) = b(n-1) = A007504(n-1) - 5 for n>4. (End)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
PARI
limit = 70; M = sum(i = 1, limit, prime(i)); v = vector(M); primeSum = 0; forprime (n = 1, prime(limit), count = 1; forstep (i = primeSum, 1, -1, if (v[i], count = count + 1; v[i + n] = 1)); v[n] = 1; print(count); primeSum = primeSum + n)
Formula
a(n) = A007504(n-1) - 5 for n > 4. - Seiichi Manyama, Oct 02 2019
Extensions
More terms from David Wasserman, Sep 16 2004
Comments