cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082548 a(n) is the number of values of k such that k can be expressed as the sum of distinct primes with largest prime in the sum equal to prime(n).

Original entry on oeis.org

1, 2, 4, 7, 12, 23, 36, 53, 72, 95, 124, 155, 192, 233, 276, 323, 376, 435, 496, 563, 634, 707, 786, 869, 958, 1055, 1156, 1259, 1366, 1475, 1588, 1715, 1846, 1983, 2122, 2271, 2422, 2579, 2742, 2909, 3082, 3261, 3442, 3633, 3826, 4023, 4222, 4433, 4656, 4883
Offset: 1

Views

Author

Naohiro Nomoto, May 02 2003

Keywords

Comments

Surprisingly, except for the initial term, the first differences of this sequence is the sequence of primes with 7 omitted. - John W. Layman, Feb 25 2012
Also number of k that can be expressed as a signed sum of the first n-1 primes. - Seiichi Manyama, Oct 01 2019

Examples

			For n=4; 7 is the 4th prime. 7 = 7, 9 = 2+7, 10 = 3+7, 12 = 5+7 = 2+3+7, 14 = 2+5+7, 15 = 3+5+7, 17 = 2+3+5+7. Values of m are 7 and 9,10,12,14,15,17. so a(4)=7.
From _Seiichi Manyama_, Oct 01 2019: (Start)
7       =  7, so 7*2         = 14 = 24-10 = 24+(-2-3-5).
2+7     =  9, so (2+7)*2     = 18 = 24- 6 = 24+( 2-3-5).
3+7     = 10, so (3+7)*2     = 20 = 24- 4 = 24+(-2+3-5).
5+7     = 12, so (5+7)*2     = 24 = 24+ 0 = 24+(-2-3+5).
2+5+7   = 14, so (2+5+7)*2   = 28 = 24+ 4 = 24+( 2-3+5).
3+5+7   = 15, so (3+5+7)*2   = 30 = 24+ 6 = 24+(-2+3+5).
2+3+5+7 = 17. so (2+3+5+7)*2 = 34 = 24+10 = 24+( 2+3+5). (End)
From _Seiichi Manyama_, Oct 02 2019: (Start)
Let b(n) be the number of k (>=0) that can be expressed as the sum of distinct primes with largest prime in the sum not greater than prime(n).
n |b(n)|            |
--+----+------------+--------------------------------------
4 | 12 |  0         | 11
  |    |  2         | 13 =  2+11
  |    |  3         | 14 =  3+11
  |    |  5         | 16 =  5+11
  |    |  7         | 18 =  7+11
  |    |  8 = 3+5   | 19 =  8+11 = (3+5)+11
  |    |  9 = 17-8  | 20 =  9+11 = (2+3+5+7)-(3+5)+11
  |    | 10 = 17-7  | 21 = 10+11 = (2+3+5+7)-7    +11
  |    | 12 = 17-5  | 23 = 12+11 = (2+3+5+7)-5    +11
  |    | 14 = 17-3  | 25 = 14+11 = (2+3+5+7)-3    +11
  |    | 15 = 17-2  | 26 = 15+11 = (2+3+5+7)-2    +11
  |    | 17 = 17-0  | 28 = 17+11 = (2+3+5+7)      +11
--+----+------------+--------------------------------------
5 | 23 |  0         | 13
  |    |  2         | 15 =  2+13
  |    |  3         | 16 =  3+13
  |    |  5         | 18 =  5+13
  |    |  7         | 20 =  7+13
  |    |  8 = 3+5   | 21 =  8+13 = (3+5)  +13
  |    |  9 = 2+7   | 22 =  9+13 = (2+7)  +13
  |    | 10 = 2+3+5 | 23 = 10+13 = (2+3+5)+13
  |    | 11         | 24 = 11+13
  |    | ...        | ...
  |    | 17 = 28-11 | 30 = 17+13 = (2+3+5+7+11)-11     +13
  |    | 18 = 28-10 | 31 = 18+13 = (2+3+5+7+11)-(2+3+5)+13
  |    | 19 = 28- 9 | 32 = 19+13 = (2+3+5+7+11)-(2+7)  +13
  |    | 20 = 28- 8 | 33 = 20+13 = (2+3+5+7+11)-(3+5)  +13
  |    | 21 = 28- 7 | 34 = 21+13 = (2+3+5+7+11)- 7     +13
  |    | 23 = 28- 5 | 36 = 23+13 = (2+3+5+7+11)- 5     +13
  |    | 25 = 28- 3 | 38 = 25+13 = (2+3+5+7+11)- 3     +13
  |    | 26 = 28- 2 | 39 = 26+13 = (2+3+5+7+11)- 2     +13
  |    | 28 = 28- 0 | 41 = 28+13 = (2+3+5+7+11)        +13
--+----+------------+-------------------------------------
...
b(n) = Sum_{k=1..n} prime(k) + 1 - 3*2 = A007504(n) - 5 for n>3.
So a(n) = b(n-1) = A007504(n-1) - 5 for n>4. (End)
		

Crossrefs

Programs

  • PARI
    limit = 70; M = sum(i = 1, limit, prime(i)); v = vector(M); primeSum = 0; forprime (n = 1, prime(limit), count = 1; forstep (i = primeSum, 1, -1, if (v[i], count = count + 1; v[i + n] = 1)); v[n] = 1; print(count); primeSum = primeSum + n)

Formula

a(n) = A007504(n-1) - 5 for n > 4. - Seiichi Manyama, Oct 02 2019

Extensions

More terms from David Wasserman, Sep 16 2004