cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082584 Fractal palindromic primes of first order.

Original entry on oeis.org

313, 353, 373, 383, 727, 757, 787, 797, 11311, 11411, 1311131, 1317131, 1513151, 1917191, 9196919, 9199919, 10301110301, 10301910301, 10501210501, 10501910501, 10601110601, 12421212421, 12421812421, 12721612721, 13331113331, 13331713331, 13831913831, 13931413931
Offset: 1

Views

Author

Lekraj Beedassy, May 07 2003

Keywords

Comments

A first order fractal palindromic prime is one of the form WmW, where either wing W about a central digit m, is itself a palindromic prime, which, however, may not be further split in this manner to maintain the property.
[Log_10(a(n))] must be of the form k2. - Robert G. Wilson v, Jul 22 2005

Examples

			12421812421 is in the sequence because it is a concatenation of the palindromic prime part 12421 with itself, hinging over the central 8;12421 cannot however be split into simpler palindromic primes in this way.
		

Crossrefs

Cf. A002385.

Programs

  • Mathematica
    f[n_] := Block[{m = n}, pd = IntegerDigits[m]; pd = Take[pd, Floor[Length[pd]/2]]; If[PrimeQ[m] && PrimeQ[FromDigits[pd]] && pd == Reverse[pd] && m == FromDigits[Reverse[IntegerDigits[m]]] && ! f[FromDigits[pd]], True, False]]; Do[ If[ f[n], Print[n]], {n, 10^10}] (* Robert G. Wilson v, Jul 22 2005 *)

Extensions

a(25) and beyond from Michael S. Branicky, May 19 2024