A082584 Fractal palindromic primes of first order.
313, 353, 373, 383, 727, 757, 787, 797, 11311, 11411, 1311131, 1317131, 1513151, 1917191, 9196919, 9199919, 10301110301, 10301910301, 10501210501, 10501910501, 10601110601, 12421212421, 12421812421, 12721612721, 13331113331, 13331713331, 13831913831, 13931413931
Offset: 1
Examples
12421812421 is in the sequence because it is a concatenation of the palindromic prime part 12421 with itself, hinging over the central 8;12421 cannot however be split into simpler palindromic primes in this way.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..21046 (all terms < 10^26, corresponding to b-file of A082598)
Crossrefs
Cf. A002385.
Programs
-
Mathematica
f[n_] := Block[{m = n}, pd = IntegerDigits[m]; pd = Take[pd, Floor[Length[pd]/2]]; If[PrimeQ[m] && PrimeQ[FromDigits[pd]] && pd == Reverse[pd] && m == FromDigits[Reverse[IntegerDigits[m]]] && ! f[FromDigits[pd]], True, False]]; Do[ If[ f[n], Print[n]], {n, 10^10}] (* Robert G. Wilson v, Jul 22 2005 *)
Extensions
a(25) and beyond from Michael S. Branicky, May 19 2024
Comments