cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082595 Let QR be the set of quadratic residues mod n: QR = {x^2 mod n, 1 <= x <= n-1}. Let MR be the set of values taken by 2^x mod n: MR = {2^x mod n, 0 <= x <= n-2}. Usually if QR is a subset of MR then n is prime and otherwise n is composite. Sequence gives numbers that violate this rule, i.e., composites where QR is a subset of MR and primes where QR is not a subset of MR.

Original entry on oeis.org

4, 8, 31, 43, 73, 89, 109, 113, 127, 151, 157, 223, 229, 233, 241, 251, 257, 277, 281, 283, 307, 331, 337, 353, 397, 431, 433, 439, 457, 499, 571, 577, 593, 601, 617, 631, 641, 643, 673, 683, 691, 727, 733, 739, 811, 881, 911, 919, 937, 953, 971, 997, 1013
Offset: 1

Views

Author

Jon Perry, May 08 2003

Keywords

Comments

It seems (although it is far from proved) that except for 4 and 8, if the routine declares n a prime, then it is.

Examples

			For n = 8, QR = {0, 1, 4} and MR = {0, 1, 2, 4}, so QR is a subset of MR, but 8 is not prime, so 8 is in the sequence.
		

Programs

  • Mathematica
    With[{s = Association@ Table[n -> SubsetQ @@ Map[Union@ # &, {Array[PowerMod[2, #, n] &, n - 1, 0], Array[PowerMod[#, 2, n] &, n - 1]}], {n, 10^3}]}, Rest@ Keys@ KeySelect[s, Or[! PrimeQ@ # && Lookup[s, #] == True, PrimeQ@ # && Lookup[s, #] == False] &]] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    quad(n)=local(v,vc); vc=1; v=vector(n-1); for (i=1,n-1,v[vc]=i^2%n; vc++); v
    mr(n)=local(v,vc,m); vc=1; v=vector(n-1); m=1; for (i=1,n-1,v[vc]=m%n; m=(2*m)%n; vc++); v
    mqsort(n)=local(u,v); u=vecsort(mr(n)); v=vecsort(quad(n)); [u,v]
    mqcomp(n)=local(w,wl,qc,pr); w=mqsort(n); wl=length(w[1]); qc=1; for (i=1,wl,pr=0; for (j=1,wl,if (w[2][i]==w[1][j],pr=1); if (pr==1,break)); if (pr==0,break)); pr
    for(i=1,500,if (isprime(i)!=mqcomp(i),print1(i, ", ")))

Formula

a(n) ~ 3n log(3n). - Arkadiusz Wesolowski, May 23 2023

Extensions

More terms from David Wasserman, Sep 21 2004