A082623 a(1) = 5, a(n) = smallest palindromic prime obtained by inserting two digits anywhere in a(n-1).
5, 151, 10501, 1035301, 103515301, 10325152301, 1013251523101, 101325181523101, 10132512821523101, 1013251428241523101, 101322514282415223101, 10132245142824154223101, 1013224514281824154223101, 101322451402818204154223101, 10132245014028182041054223101
Offset: 1
Links
- Giovanni Resta, Table of n, a(n) for n = 1..78
Programs
-
Maple
cp:= proc(x,y) if x[1] < y[1] then true elif x[1] > y[1] then false elif nops(x)=1 then true else procname(x[2..-1],y[2..-1]) fi end proc: A[1]:= 5: L:= [5]: for n from 2 to 15 do nL:= nops(L); Lp:= sort([seq(seq([op(L[1..i]), x, op(L[i+1..-1])], x=`if`(i=0, 1..9, 0..9)), i=0..nL)], cp); cands:= map(t -> add(t[i]*(10^(i-1)+10^(2*nL+1-i)), i=1..nL)+t[nL+1]*10^(nL), Lp); found:= false; for i from 1 to nops(cands) do if isprime(cands[i]) then A[n]:= cands[i]; L:= Lp[i]; found:= true; break fi od; if not found then break fi od: seq(A[i],i=1..15); # Robert Israel, Jan 03 2017, corrected Sep 20 2019
Extensions
Terms after a(4) corrected by Giovanni Resta, Sep 20 2019
Comments