cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082632 Decimal expansion of lim_{y->infinity} y^2*(Re(zeta(1 + i/y)) - gamma).

Original entry on oeis.org

0, 0, 4, 8, 4, 5, 1, 8, 1, 5, 9, 6, 4, 3, 6, 1, 5, 9, 2, 4, 2, 2, 6, 5, 1, 9, 3, 0, 1, 7, 6, 0, 6, 2, 6, 4, 6, 7, 9, 5, 3, 2, 9, 0, 3, 0, 5, 0, 6, 7, 0, 3, 7, 4, 9, 4, 0, 3, 5, 0, 6, 8, 2, 7, 2, 5, 9, 2, 5, 3, 7, 7, 6, 9, 1, 1, 4, 0, 2, 0, 7, 0, 8, 5, 9, 8, 9, 0, 9, 8, 6, 9, 0, 6, 8, 7, 2, 6, 8, 6, 5, 9, 6, 4, 3
Offset: 0

Views

Author

Benoit Cloitre, May 24 2003

Keywords

Comments

Lim_{y->infinity} Im(zeta(1 + i/y))/y = -1. - Vaclav Kotesovec, Feb 18 2021

Examples

			0.00484518159643615924226519301760626...
		

Crossrefs

Cf. A086279.

Programs

  • Mathematica
    StieltjesGamma[2]/2 // RealDigits[#, 10, 103]& // First // Join[{0, 0}, #]& (* Jean-François Alcover, Mar 04 2013 *)

Formula

Equals lim_{y->infinity} y^2*(Re(zeta(1+i/y)) - gamma), where gamma is the Euler-Mascheroni constant A001620.
Equals A086279 / 2. - R. J. Mathar, Jul 15 2010

Extensions

More terms from Jean-François Alcover, Mar 04 2013