A082641 Triangle T(n,k) (n >= 1, 1 <= k <= n) read by rows, where T(n,k) = number of basic invariants of degree k for the cyclic group of order and degree n.
1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 4, 4, 4, 1, 3, 6, 6, 2, 2, 1, 3, 8, 12, 12, 6, 6, 1, 4, 10, 18, 16, 8, 4, 4, 1, 4, 14, 26, 32, 18, 12, 6, 6, 1, 5, 16, 36, 48, 32, 12, 8, 4, 4, 1, 5, 20, 50, 82, 70, 50, 30, 20, 10, 10, 1, 6, 24, 64, 104, 84, 36, 20, 12, 8, 4, 4, 1, 6, 28, 84, 168, 180, 132, 84, 60, 36, 24, 12, 12, 1, 7, 32, 104, 216, 242, 162, 96, 42, 30, 18, 12, 6, 6
Offset: 1
Examples
Triangle with row sums (A002956): Z_1: 1 ................................... 1 Z_2: 1 1 ................................ 2 Z_3: 1 1 2 ............................. 4 Z_4: 1 2 2 2 .......................... 7 Z_5: 1 2 4 4 4 ...................... 15 Z_6: 1 3 6 6 2 2 ................... 20 Z_7: 1 3 8 12 12 6 6 ................ 48 Z_8: 1 4 10 18 16 8 4 4 ............. 65 Z_9: 1 4 14 26 32 18 12 6 6 ......... 119 Z_10: 1 5 16 36 48 32 12 8 4 4 ...... 166 Z_11: 1 5 20 50 82 70 50 30 20 10 10 ... 348 ...
References
- M. D. Neusel and L. Smith, Invariant Theory of Finite Groups, Amer. Math. Soc., 2002; see p. 208.
- C. W. Strom, Complete systems of invariants of the cyclic groups of equal order and degree, Proc. Iowa Acad. Sci., 55 (1948), 287-290.
Links
- Finklea, Moore, Ponomarenko and Turner, Invariant Polynomials and Minimal Zero Sequences, Involve 1 (2008), no. 2, 159-165.
- Bryson W. Finklea, Terri Moore, Vadim Ponomarenko and Zachary J. Turner, Invariant polynomials and minimal zero sequences, Involve, 1:2 (2008), pp. 159-165.
- Vadim Ponomarenko, Table (Excel spread-sheet format)
- Vadim Ponomarenko, Programs
Crossrefs
Row sums give A002956.
Extensions
More terms from Vadim Ponomarenko (vadim123(AT)gmail.com), Jun 29 2004
Comments