A082651 Positive integer values of n such that 5n^2+11 is a square.
1, 7, 25, 127, 449, 2279, 8057, 40895, 144577, 733831, 2594329, 13168063, 46553345, 236291303, 835365881, 4240075391, 14990032513, 76085065735, 268985219353, 1365291107839, 4826743915841, 24499154875367, 86612405265785, 439619496648767, 1554196550868289
Offset: 1
Examples
25 is a term of the sequence since 5*25^2 + 11 = 56^2.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,18,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0, 18, 0, -1}, {1, 7, 25, 127}, 50] (* Paolo Xausa, Mar 18 2024 *)
-
PARI
Vec(x*(1+7*x+7*x^2+x^3)/(1-18*x^2+x^4) + O(x^100)) \\ Colin Barker, Nov 06 2014
Formula
a(n) = 18*a(n-2) - a(n-4).
G.f.: x*(1+7*x+7*x^2+x^3)/(1-18*x^2+x^4). - Colin Barker, Jun 14 2012
Extensions
More terms from Colin Barker, Nov 06 2014
Comments