cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A052454 Positive integer values of k such that 10*k^2 - 9 is a square.

Original entry on oeis.org

1, 3, 13, 25, 111, 493, 949, 4215, 18721, 36037, 160059, 710905, 1368457, 6078027, 26995669, 51965329, 230804967, 1025124517, 1973314045, 8764510719, 38927735977, 74933968381, 332820602355, 1478228842609, 2845517484433, 12638418378771
Offset: 1

Views

Author

John W. Layman, May 20 2003

Keywords

Examples

			25 is a term of the sequence since 10*25^2-9 = 6241 = 79^2.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 38, 0, 0, -1}, {1, 3, 13, 25, 111, 493}, 50] (* Paolo Xausa, Mar 18 2024 *)

Formula

a(n) = 38*a(n-3)-a(n-6).
G.f.: x*(1-x)*(1+4*x+17*x^2+4*x^3+x^4)/(1-38*x^3+x^6). [Colin Barker, Jun 13 2012]

Extensions

More terms from Bruno Berselli, Jan 29 2013

A281064 Values of x such that x^2 = 5*y^2 + 11, where x and y are positive integers.

Original entry on oeis.org

4, 16, 56, 284, 1004, 5096, 18016, 91444, 323284, 1640896, 5801096, 29444684, 104096444, 528363416, 1867934896, 9481096804, 33518731684, 170131379056, 601469235416, 3052883726204, 10792927505804, 54781775692616, 193671225869056, 983019078740884
Offset: 1

Views

Author

Colin Barker, Jan 14 2017

Keywords

Comments

The corresponding values of y are in A082651.

Examples

			56 is in the sequence because 56^2 = 3136 = 5*25^2+11.
		

Crossrefs

Cf. A082651.

Programs

  • Mathematica
    LinearRecurrence[{0,18,0,-1},{4,16,56,284},30] (* Harvey P. Dale, May 28 2020 *)
  • PARI
    Vec(4*x*(1 - x)*(1 + 5*x + x^2) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)) + O(x^30))

Formula

a(n) = ((-2-r)^n*(r-5) + (5+r)*(r-2)^n + (15+7*r)*(r+2)^n + (2-r)^n*(7*r-15)) / (4*r) where r=sqrt(5).
a(n) = 18*a(n-2) - a(n-4) for n>3.
G.f.: 4*x*(1 - x)*(1 + 5*x + x^2) / ((1 + 4*x - x^2)*(1 - 4*x - x^2)).
Showing 1-2 of 2 results.