cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A221874 Numbers m such that 10*m^2 + 6 is a square.

Original entry on oeis.org

1, 5, 43, 191, 1633, 7253, 62011, 275423, 2354785, 10458821, 89419819, 397159775, 3395598337, 15081612629, 128943316987, 572704120127, 4896450447169, 21747674952197, 185936173675435, 825838944063359, 7060678149219361, 31360132199455445
Offset: 1

Views

Author

Bruno Berselli, Jan 28 2013

Keywords

Comments

The Diophantine equation 10*x^2 + k = y^2, for |k| < 10, has integer solutions with the following k values:
k = 1, the nonnegative x values are in A084070;
k = -1, " A097315;
k = 4, " 2*A084070;
k = -4, " 2*A097315;
k = 6, " this sequence;
k = -6, " A221875;
k = 9, " A075836;
k = -9, " A052454.
a(n+1)/a(n) tends alternately to (sqrt(2)+sqrt(5))^2/3 and (2*sqrt(2)+sqrt(5))^2/3; a(n+2)/a(n) tends to A176398^2.

Crossrefs

Programs

  • Magma
    m:=22; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)*(1+4*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2))));
    
  • Maple
    A221874:=proc(q)
    local n;
    for n from 1 to q do if type(sqrt(10*n^2+6),integer) then print(n);
    fi; od; end:
    A221874(100000000000000000); # Paolo P. Lava, Feb 11 2013
  • Mathematica
    LinearRecurrence[{0, 38, 0, -1}, {1, 5, 43, 191}, 22]
  • Maxima
    makelist(expand(((-5*(-1)^n+2*sqrt(10))*(3+sqrt(10))^(2*floor(n/2))-(5*(-1)^n+2*sqrt(10))*(3-sqrt(10))^(2*floor(n/2)))/10), n, 1, 22);

Formula

G.f.: x*(1+x)*(1+4*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2)).
a(n) = ((-5*(-1)^n+2*t)*(3+t)^(2*floor(n/2)) - (5*(-1)^n+2*t)*(3-t)^(2*floor(n/2)))/10, where t=sqrt(10).
a(n) = 2*A129556(n) + 1.
a(n)*a(n-3) - a(n-1)*a(n-2) = -36 + 12(-1)^n.

A198943 y-values in the solution to 10*x^2-9 = y^2.

Original entry on oeis.org

1, 9, 41, 79, 351, 1559, 3001, 13329, 59201, 113959, 506151, 2248079, 4327441, 19220409, 85367801, 164328799, 729869391, 3241728359, 6240166921, 27715816449, 123100309841, 236962014199, 1052471155671, 4674570045599, 8998316372641, 39966188099049, 177510561422921
Offset: 1

Views

Author

Sture Sjöstedt, Oct 31 2011

Keywords

Crossrefs

Cf. A052454.

Programs

  • Mathematica
    LinearRecurrence[{0,0, 38, 0,0, -1}, {1, 9, 41, 79, 351, 1559}, 27]  (* Bruno Berselli, Nov 11 2011 *)

Formula

a(n+6) = 38*a(n+3)-a(n) with a(1)=1, a(2)=9, a(3)=41, a(4)=79, a(5)=351.
G.f.: x*(1+x)*(1+8*x+33*x^2+8*x^3+x^4)/(1-38*x^3+x^6). - Bruno Berselli, Nov 04 2011

Extensions

More terms from Bruno Berselli, Nov 04 2011

A083000 Values of x for which 9y^2 = x^2 + 2xy - 2x has integer solutions with positive y.

Original entry on oeis.org

3, 18, 338, 2883, 24642, 486098, 4155987, 35532450, 700951682, 5992929075, 51237766962
Offset: 1

Views

Author

Jon Perry, May 30 2003

Keywords

Comments

From the x and y values, one can derive some z's such that 10z^2-9 is a square (A052454): z = x+y-1. Other A052454 values can be derived from A046195.

Crossrefs

Extensions

Edited by Don Reble, Nov 07 2005
Showing 1-3 of 3 results.