A082662 Numbers k such that the odd part of k is less than sqrt(2k).
1, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 144, 160, 176, 192, 208, 224, 240, 256, 272, 288, 304, 320, 336, 352, 368, 384, 400, 416, 432, 448, 464, 480, 496, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- José Manuel Rodríguez Caballero, Integers Which Cannot Be Partitioned Into an Even Number of Consecutive Parts, INTEGERS, Volume 19 (2019), #A20.
- M. D. Hirschhorn and P. M. Hirschhorn, Partitions into Consecutive Parts, Mathematics Magazine: 2003, Volume 76, Number 4, pp. 306-308.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 38.
- Eric Weisstein's World of Mathematics, Even Part
- Eric Weisstein's World of Mathematics, Odd Part
Crossrefs
Programs
-
Mathematica
cnt[n_] := DivisorSum[n, Boole[OddQ[#] && #>Sqrt[2n]]&]; Select[Range[800], cnt[#]==0&] (* Jean-François Alcover, Feb 16 2017 *)
-
PARI
isok(n) = my(q = sqrt(2*n)); (sumdiv(n, d, (d%2) && (d < q)) == sumdiv(n, d, d%2)); \\ Michel Marcus, Jul 04 2014
Formula
G.f. = 1 + (1/(1-x)^2) * Sum_{m >= 0} (2^(m+1)*x^(3*2^m-2) * ( x^(3*2^m)*(2^(m+2)*(x-1)-x) - 2^m*(x-1) + x ) ). (This follows from (P3).) :w
- N. J. A. Sloane, Feb 02 2021
Extensions
Edited by N. J. A. Sloane, Jan 28 2021: Replaced original indirect definition by simple direct definition; rearranged comments; provided proofs (not yet included here) that the various definitions are equivalent
Comments