cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082756 Larger of a pair of consecutive primes having only prime digits.

Original entry on oeis.org

3, 5, 7, 227, 733, 3257, 3733, 5237, 5333, 7577, 7727, 7757, 22277, 23333, 25537, 27737, 32237, 32327, 32537, 35327, 35537, 37273, 37277, 52237, 52733, 53327, 53353, 53777, 55337, 72227, 72733, 75227, 75533, 75557, 222533, 222553, 222557, 223277, 223757, 225227
Offset: 1

Views

Author

Amarnath Murthy, Apr 18 2003

Keywords

Examples

			227 is a term as the previous prime 223 also has only prime digits.
		

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 0; q = 1; pd = {1}; Do[p = q; pd = qd; q = NextPrim[p]; qd = Union[ Join[{2, 3, 5, 7}, IntegerDigits[q]]]; If[pd == qd == {2, 3, 5, 7}, Print[q]], {n, 1, 20000}]
    Transpose[Select[Partition[Prime[Range[20000]],2,1],And@@PrimeQ[ Flatten[ IntegerDigits/@#]]&]] [[2]] (* Harvey P. Dale, Jul 19 2011 *)
  • Python
    from sympy import nextprime, isprime
    from itertools import count, islice, product
    def onlypd(n): return set(str(n)) <= set("2357")
    def agen():
        yield from [3, 5, 7]
        for digits in count(2):
            for p in product("2357", repeat=digits-1):
                for end in "37":
                    t = int("".join(p) + end)
                    if isprime(t):
                        t2 = nextprime(t)
                        if onlypd(t2):
                            yield t2
    print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 11 2022

Extensions

Edited and extended by Robert G. Wilson v, Apr 22 2003
a(38) and beyond from Michael S. Branicky, Mar 11 2022