A082756 Larger of a pair of consecutive primes having only prime digits.
3, 5, 7, 227, 733, 3257, 3733, 5237, 5333, 7577, 7727, 7757, 22277, 23333, 25537, 27737, 32237, 32327, 32537, 35327, 35537, 37273, 37277, 52237, 52733, 53327, 53353, 53777, 55337, 72227, 72733, 75227, 75533, 75557, 222533, 222553, 222557, 223277, 223757, 225227
Offset: 1
Examples
227 is a term as the previous prime 223 also has only prime digits.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 0; q = 1; pd = {1}; Do[p = q; pd = qd; q = NextPrim[p]; qd = Union[ Join[{2, 3, 5, 7}, IntegerDigits[q]]]; If[pd == qd == {2, 3, 5, 7}, Print[q]], {n, 1, 20000}] Transpose[Select[Partition[Prime[Range[20000]],2,1],And@@PrimeQ[ Flatten[ IntegerDigits/@#]]&]] [[2]] (* Harvey P. Dale, Jul 19 2011 *)
-
Python
from sympy import nextprime, isprime from itertools import count, islice, product def onlypd(n): return set(str(n)) <= set("2357") def agen(): yield from [3, 5, 7] for digits in count(2): for p in product("2357", repeat=digits-1): for end in "37": t = int("".join(p) + end) if isprime(t): t2 = nextprime(t) if onlypd(t2): yield t2 print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 11 2022
Extensions
Edited and extended by Robert G. Wilson v, Apr 22 2003
a(38) and beyond from Michael S. Branicky, Mar 11 2022