A082851 Partial sums of A082850.
1, 2, 4, 5, 6, 8, 11, 12, 13, 15, 16, 17, 19, 22, 26, 27, 28, 30, 31, 32, 34, 37, 38, 39, 41, 42, 43, 45, 48, 52, 57, 58, 59, 61, 62, 63, 65, 68, 69, 70, 72, 73, 74, 76, 79, 83, 84, 85, 87, 88, 89, 91, 94, 95, 96, 98, 99, 100, 102, 105, 109, 114, 120, 121, 122, 124, 125, 126
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..16383
Programs
-
Maple
A082850 := proc(n) option remember ; local m ; if n <= 3 then op(n,[1,1,2]) ; else m := ilog2(n+1) ; if n = 2^m -1 then m; else m := ilog2(n) ; return procname(n+1-2^m) ; end if ; end if; end proc: A082851 := proc(n) add( A082850(i),i=1..n) ; end proc: seq(A082851(n),n=1..100) ; # R. J. Mathar, Nov 17 2009
-
Mathematica
A082850[n_] := A082850[n] = Module[{m}, If[n <= 3, {1, 1, 2}[[n]], m = Floor@Log2[n + 1]; If[n == 2^m - 1, m, m = Floor@Log2[n]; Return @ A082850[n + 1 - 2^m]]]]; Table[A082850[n], {n, 1, 68}] // Accumulate (* Jean-François Alcover, Dec 21 2023, after R. J. Mathar *) Accumulate[Fold[Join[#, #, {#2}] &, {}, Range[7]]] (* Paolo Xausa, Jan 30 2025 *)
Formula
Limit_{n->oo} a(n)/n = 2. Is (2-a(n)/n)*sqrt(n)*log(n) bounded?
Extensions
Minor edits by R. J. Mathar, Nov 17 2009
Comments