cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082851 Partial sums of A082850.

Original entry on oeis.org

1, 2, 4, 5, 6, 8, 11, 12, 13, 15, 16, 17, 19, 22, 26, 27, 28, 30, 31, 32, 34, 37, 38, 39, 41, 42, 43, 45, 48, 52, 57, 58, 59, 61, 62, 63, 65, 68, 69, 70, 72, 73, 74, 76, 79, 83, 84, 85, 87, 88, 89, 91, 94, 95, 96, 98, 99, 100, 102, 105, 109, 114, 120, 121, 122, 124, 125, 126
Offset: 1

Views

Author

Benoit Cloitre, Apr 14 2003

Keywords

Comments

It seems that n/(2n-a(n)) is an integer for infinitely many values of n, see A082396.

Crossrefs

Programs

  • Maple
    A082850 := proc(n) option remember ; local m ; if n <= 3 then op(n,[1,1,2]) ; else m := ilog2(n+1) ; if n = 2^m -1 then m; else m := ilog2(n) ; return procname(n+1-2^m) ; end if ; end if; end proc:
    A082851 := proc(n) add( A082850(i),i=1..n) ; end proc: seq(A082851(n),n=1..100) ; # R. J. Mathar, Nov 17 2009
  • Mathematica
    A082850[n_] := A082850[n] = Module[{m}, If[n <= 3, {1, 1, 2}[[n]], m = Floor@Log2[n + 1]; If[n == 2^m - 1, m, m = Floor@Log2[n]; Return @ A082850[n + 1 - 2^m]]]];
    Table[A082850[n], {n, 1, 68}] // Accumulate (* Jean-François Alcover, Dec 21 2023, after R. J. Mathar *)
    Accumulate[Fold[Join[#, #, {#2}] &, {}, Range[7]]] (* Paolo Xausa, Jan 30 2025 *)

Formula

Limit_{n->oo} a(n)/n = 2. Is (2-a(n)/n)*sqrt(n)*log(n) bounded?

Extensions

Minor edits by R. J. Mathar, Nov 17 2009