cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A082886 floor((prime(n+1)-prime(n))/log(prime(n))).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 2, 0, 0, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Apr 17 2003

Keywords

Comments

a(n) is unbounded by a theorem of Westzynthius. - Charles R Greathouse IV, Sep 04 2015

Examples

			a(217) = floor((1361-1327)/log(1327)) = floor(4.72834...) = 4.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(Prime[n+1]-Prime[n])/Log[Prime[n]]//N], {n, 1, 220}]
  • PARI
    a(n,p=prime(n))=(nextprime(p+1)-p)\log(p) \\ Charles R Greathouse IV, Sep 04 2015

Formula

a(n)=floor((prime(n+1)-prime(n))/log(prime(n))).
a(n)=Floor(A001223(n)/log(A000040(n))).
Infinitely often a(n) >> log log n log log log log n/log log log n, see Ford-Green-Konyagin-Maynard-Tao. - Charles R Greathouse IV, Sep 04 2015