A082898 a(n) = A082895(n)/n, where A082895(n) is the closest number to sigma(n) which is divisible by n.
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
Mathematica
Table[Floor[(Floor[n/2]+DivisorSigma[1, n])/n], {n, 1, 100}]
-
PARI
A082898(n) = { my(s=sigma(n), a = ((s\n)*n), b = (1+(s\n))*n); if((b-s) <= abs(a-s), b, a)/n; }; \\ Antti Karttunen, Oct 09 2018
Formula
a(n) = floor[(floor(n/2)+sigma[n])/n], sigma() = A000203().